
that the author is writing with Andrews on the lost
notebook [1].

We conclude with a few remarks about Ra-
manujan’s methods. It has been suggested that
he discovered his results by “intuition” or by
making deductions from numerical calculations
or by inspiration from Goddess Namagiri. Indeed,
like most mathematicians, Ramanujan evidently
made extensive calculations that provided guid-
ance. However, Hardy and this writer firmly believe
that Ramanujan created mathematics as any other
mathematician would and that his thinking can
be explained like that of other mathematicians.
However, because Ramanujan did not leave us any
proofs for the vast number of results found in
his earlier notebooks and in his lost notebook,
we often do not know Ramanujan’s reasoning. As
Ramanujan himself was aware, some of his argu-
ments were not rigorous by then-contemporary
standards. Nonetheless, despite his lack of rigor at
times, Ramanujan doubtless thought and devised
proofs as would any other mathematician.
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Jonathan M. Borwein

Ramanujan and Pi
Since Ramanujan’s 1987 centennial, much new
mathematics has been stimulated by uncanny
formulas in Ramanujan’s Notebooks (lost and
found). In illustration, I mention the exposition
by Moll and his colleagues [1] which illustrates
various neat applications of Ramanujan’s Master
Theorem, which extrapolates the Taylor coefficients
of a function, and relates them to methods of
integration used in particle physics. I also note
lovely work on the modular functions behind
Apéry and Domb numbers by Chan and others [6],
and finally I mention my own work with Crandall
on Ramanujan’s arithmetic-geometric continued
fraction [12].

For reasons of space, I now discuss only work
related directly to pi, and so continue a story started
in [9], [11]. Truly novel series for 1/π , based on
elliptic integrals, were found by Ramanujan around
1910 [19], [5], [7], [21]. One is

(1)
1
π
= 2

√
2

9801

∞∑
k=0

(4k)! (1103+ 26390k)
(k!)43964k .

Each term of (1) adds eight correct digits. Though
then unproven, Gosper used (1) for the computation
of a then-record 17 million digits of π in 1985,
thereby completing the first proof of (1) [7, Ch. 3].
Soon after, David and Gregory Chudnovsky found
the following variant, which relies on the quadratic
number field Q(

√
−163) rather than Q(

√
58), as is

implicit in (1):

(2)
1
π
= 12

∞∑
k=0

(−1)k (6k)! (13591409+ 545140134k)
(3k)! (k!)3 6403203k+3/2 .

Each term of (2) adds fourteen correct digits. (Were
a larger imaginary quadratic field to exist with
class number one, there would be an even more
extravagant rational series for some surd divided
by π [10].) The brothers used this formula several
times, culminating in a 1994 calculation of π to
over four billion decimal digits. Their remarkable
story was told in a prize-winning New Yorker article
[18]. Remarkably, (2) was used again in 2010 and
2011 for the current record computations of π to
five and ten trillion decimal digits respectively.

Jonathan M. Borwein is Laureate Professor in the School
of Mathematical and Physical Sciences at the Univer-
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Quartic Algorithm for π
The record for computation of π has gone from
29.37 million decimal digits in 1986 to ten trillion
digits in 2011. Since the algorithm below, which
found its inspiration in Ramanujan’s 1914 paper,
was used as part of computations both then and
as late as 2009, it is interesting to compare the
performance in each case: Set a0 := 6− 4

√
2 and

y0 :=
√

2− 1; then iterate

yk+1=
1− (1− y4

k )1/4

1+ (1− y4
k )1/4

,

ak+1=ak(1+ yk+1)4−22k+3yk+1(1+yk+1+y2
k+1).

(3)

Thenak converges quartically to 1/π ; each iteration
quadruples the number of correct digits. Twenty-
one iterations produce an algebraic number that
coincides with π to well over six trillion places.

This scheme and the 1976 Salamin–Brent
scheme [7, Ch. 3] have been employed fre-
quently over the past quarter century. Here
is a highly abbreviated chronology (based on
http://en.wikipedia.org/wiki/Chronology_
of_computation_of_pi):

• 1986: David Bailey used (3) to compute
29.4 million digits of π . This required 28
hours on one CPU of the new Cray-2 at NASA
Ames Research Center. Confirmation using
the Salamin-Brent scheme took another
40 hours. This computation uncovered
hardware and software errors on the Cray-2.

• January 2009: Takahashi used (3) to com-
pute 1.649 trillion digits (nearly 60,000
times the 1986 computation), requiring
73.5 hours on 1,024 cores (and 6.348 Tbyte
memory) of the Appro Xtreme-X3 system.
Confirmation via the Salamin-Brent scheme
took 64.2 hours and 6.732 Tbyte of main
memory.

• April 2009: Takahashi computed 2.576
trillion digits.

• December 2009: Bellard computed nearly
2.7 trillion decimal digits (first in binary)
using (2). This took 131 days, but he used
only a single four-core workstation with
lots of disk storage and even more human
intelligence!

• August 2010: Kondo and Yee computed
5 trillion decimal digits, again using
equation (2). This was done in binary,
then converted to decimal. The binary
digits were confirmed by computing 32
hexadecimal digits of π ending with
position 4,152,410,118,610 using BBP-type
formulas for π due to Bellard and Plouffe
[7, Chapter 3]. Additional details are given

1975 1980 1985 1990 1995 2000 2005 2010

108

1010

1012

Figure 1. Plot of πππ calculations in digits (dots)
compared with the long-term slope of Moore’s
Law (line).

athttp://www.numberworld.org/misc_
runs/pi-5t/announce_en.html. See
also [4], in which analysis showing these
digits appear to be “very normal” is made.

Daniel Shanks, who in 1961 computed π to
over 100,000 digits, once told Phil Davis that
a billion-digit computation would be “forever
impossible”. But both Kanada and the Chudnovskys
achieved that in 1989. Similarly, the intuitionists
Brouwer and Heyting asserted the “impossibility”
of ever knowing whether the sequence 0123456789
appears in the decimal expansion of π ; yet it was
found in 1997 by Kanada, beginning at position
17387594880. As late as 1989, Roger Penrose
ventured, in the first edition of his book The
Emperor’s New Mind, that we likely will never
know if a string of ten consecutive 7s occurs
in the decimal expansion of π . This string was
found in 1997 by Kanada, beginning at position
22869046249.

Figure 6 shows the progress of π calculations
since 1970, superimposed with a line that charts
the long-term trend of Moore’s Law. It is worth
noting that whereas progress in computing π
exceeded Moore’s Law in the 1990s, it has lagged a
bit in the past decade. Most of this progress is still
in mathematical debt to Ramanujan.

As noted, one billion decimal digits were first
computed in 1989, and the ten (actually fifty) billion
digit mark was first passed in 1997. Fifteen years
later one can explore, in real time, multibillion step
walks on the hex digits of π at http://carmaweb.
newcastle.edu.au/piwalk.shtml, as drawn by
Fran Aragon.

Formulas for 1/π2 and More

About ten years ago Jésus Guillera found various
Ramanujan-like identities for 1/πN using integer
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relation methods. The three most basic—and
entirely rational—identities are

4
π2
=

∞∑
n=0

(−1)nr(n)5(13+180n+820n2)
(

1
32

)
2n+1,

(4)

2
π2
=
∞∑
n=0

(−1)nr(n)5(1+ 8n+ 20n2)
(

1
2

)
2n+1,

(5)

4
π3

?=
∞∑
n=0

r(n)7(1+14n+76n2+168n3)
(

1
8

)2n+1

,

(6)

where r(n) := (1/2 · 3/2 · · · · · (2n− 1)/2)/n! .
Guillera proved (4) and (5) in tandem by very

ingeniously using the Wilf-Zeilberger algorithm
[20], [17] for formally proving hypergeometric-like
identities [7], [15], [21]. No other proof is known.
The third, (6), is almost certainly true. Guillera
ascribes (6) to Gourevich, who found it using
integer relation methods in 2001.

There are other sporadic and unexplained exam-
ples based on other symbols, most impressively a
2010 discovery by Cullen:
(7)

211

π4
?=
∞∑
n=0

( 1
4 )n(

1
2 )

7
n(

3
4 )n

(1)9n

×(21+ 466n+ 4340n2 + 20632n3 + 43680n4)
(

1
2

)12n
.

We shall revisit this formula below.

Formulae for π2

In 2008 Guillera [15] produced another lovely, if
numerically inefficient, pair of third-millennium
identities—discovered with integer relation meth-
ods and proved with creative telescoping—this
time for π2 rather than its reciprocal. They are
based on:

(8)
∞∑
n=0

1
22n

(
x+ 1

2

)3

n
(x+ 1)3n

(6(n+ x)+ 1) = 8x
∞∑
n=0

(
1
2

)2

n
(x+ 1)2n

,

and

(9)
∞∑
n=0

1
26n

(
x+ 1

2

)3

n
(x+ 1)3n

(42(n+ x)+ 5) = 32x
∞∑
n=0

(
x+ 1

2

)2

n
(2x+ 1)2n

.

Here (a)n = a(a + 1) · · · (a + n − 1) is the rising
factorial. Substituting x = 1/2 in (8) and (9), he
obtained respectively the formulae

∞∑
n=0

1
22n

(1)3n(
3
2

)3

n

(3n+ 2) = π
2

4
,(10)

∞∑
n=0

1
26n

(1)3n(
3
2

)3

n

(21n+ 13) = 4
π2

3
.

Calabi-Yau Equations and Supercongruences

Motivated by the theory of Calabi-Yau differential
equations [2], Almkvist and Guillera have discov-
ered many new identities. One of the most pleasing
is

(11)
1
π2

?= 32
3

∞∑
n=0

(6n)!
(n!)6

(
532n2 + 126n+ 9

)
106n+3

.

This is yet one more case where mysterious
connections have been found between disparate
parts of mathematics and Ramanujan’s work [21],
[13], [14].

As a final example, we mention the existence of
supercongruences of the type described in [3], [16],
[23]. These are based on the empirical observation
that a Ramanujan series for 1/πN , if truncated
after p − 1 terms for a prime p, seems always to
produce congruences to a higher power of p. The
formulas below are taken from [22]:

(12)
p−1∑
n=0

( 1
4 )n(

1
2 )

3
n(

3
4 )n

24n (1)5n

(
3+ 34n+ 120n2

)
≡ 3p2(modp5),

p−1∑
n=0

( 1
4 )n(

1
2 )

7
n(

3
4 )n

212n (1)9n

(
21+ 466n+ 4340n2 + 20632n3 + 43680n4

)(13)

?≡ 21p4(modp9).

We note that (13) is the supercongruence corre-
sponding to (6), while for (12) the corresponding
infinite series sums to 32/π4. We conclude by
reminding the reader that all identities marked

with ‘
?=’ are assuredly true but remain to be proved.

Ramanujan might well be pleased.
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The second installment of this article—with pieces
by Ken Ono, K. Soundararajan, R. C. Vaughan, and
S. Ole Warnaar—will appear in the January 2013
issue of the Notices.
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